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ABSTRACT
A tensor is a higher-order array of multiple dimensions. Ten-

sors have unique properties, most of which are not coherent with
those of matrices. Hence, specialized algorithms are required for
handling and processing multidimensional tensors. In this re-
gard, tensor decomposition plays an instrumental role in iden-
tifying meaningful and interpretable insights from data. One
of the most prominent tensor decomposition algorithms is CP
(Canonical Polyadic or CANDECOMP/PARAFAC) decomposi-
tion, which decomposes a tensor into a sum of rank-1 tensors.
While there are multiple versions of the CP decomposition al-
gorithm, we look forward to parallelizing the most straightfor-
ward approach that uses alternating least squares (CP-ALS) for
optimization [1]. We have leveraged OpenMP and OpenACC for
parallelizing the algorithm. We tested our serial and parallel code
on synthetically generated data.

NOMENCLATURE
T A tensor is represented as an italicized character
AAA, L Matrices are represented either in bold or non-bold, this

way
a A vector is represented in smaller case
T i, j,k Tensor is indexed this way
AAAi, j A matrix is indexed this way
AAA◦BBB Hadamard Product (Element-wise multiplication)
a⊗b Outer product of two vectors
a⊗b⊗ c · · · Outer product of more than two vectors
AAA�BBB The Khatri-Rao product
T (k) kth unfolding of a tensor - matricising a tensor along the

kth dimension

INTRODUCTION
Tensors are higher-dimensional arrays, with vectors and ma-

trices being the simplest tensors with one and two dimensions,
respectively. A tensor with N dimensions can be denoted as
T ∈Rd1×d2×···×dN , where d1, · · · ,dN are the sizes of each dimen-
sion. Each element in a tensor of order N can be accessed by a
set of N integers i1, · · · , iN such that 1≤ ik ≤ dk ∀ k ∈ {1, · · · ,N}.
Data in the form of higher dimensional tensors are extremely
prominent in bioinformatics, signal processing, image analysis,
network science, and deep learning. It is important to note that
tensors have distinct properties that are not coherent with those
of matrices. To derive meaningful information from large tensors
and facilitate machine learning analysis, it is necessary to decom-
pose or factorize the tensors into simpler tensors. Decompos-
ing tensors have successfully provided a way to extract domain-
specific information from data in the areas of neuroscience [2]
and social network analysis [3].

Matrix Decomposition
For a given matrix MMM, it is possible to decompose (or factor-

ize) it into two component matrices AAA, BBB such that

MMM = AAABBBT (1)

Here, AAA and BBB need not be unique factor matrices. To illustrate
the same, consider a orthogonal rotation matrix RRR, in which case
RRRRRRTTT = III. By incorporating RRR in equation (1), we get

MMM = (AAARRR)(RRRTTT BBBTTT ) = (AAARRR)(BBBRRR)T (2)
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implying that there are multiple ways to decompose or factorize
a matrix. The decomposition can however be unique if stringent
conditions are imposed on the factor matrices AAA and BBB. Hav-
ing that said, algorithms like LU decomposition, QR decompo-
sition, Singular Value Decomposition (SVD) are systematic and
meaningful ways to decompose a matrix uniquely by enforcing
appropriate conditions. For instance, in QR decomposition, AAA is
enforced to be an orthogonal matrix and BBB is enforced to be a
lower triangular matrix.

Tensor Decomposition
Tensor decomposition, or precisely, tensor rank decompo-

sition is the technique of factorizing a tensor into a sum of
low-rank tensors. One of the most prominent tensor decom-
position algorithms is the CP (Canonical Polyadic or CANDE-
COMP/PARAFAC) decomposition algorithm. The goal of the
CP algorithm is to construct vectors a(r)i ,∀ i ∈ {1, · · · ,N} and
∀ r ∈ {1, · · · ,R} such that

T ≈ T̂ =
R

∑
r=1

a(r)1 ⊗a(r)2 ⊗·· ·⊗a(r)N (3)

where R is the rank of the tensor. Here, ar
i ∈Rdi ∀ r. The goal of

most of the implementations of the CP algorithm is to minimize
the least squares objective, as given in equation (4).

J = min
a(r)i

‖T − T̂ ‖2
F (4)

Alternating Least Squares (CP-ALS)
For simplicity, consider a third order tensor T ∈ Rd1×d2×d3

(3-dimensional array), where we are required to find vectors a(r)i
such that,

T ≈ T̂ =
R

∑
r=1

a(r)1 ⊗a(r)2 ⊗a(r)3 (5)

Now, let us represent factor matrices AAA,BBB,CCC as follows,

AAA =
[
a(1)1 · · · a(R)1

]
d1×R

(6)

BBB =
[
a(1)2 · · · a(R)2

]
d2×R

(7)

CCC =
[
a(1)3 · · · a(R)3

]
d3×R

(8)

The optimization objective hence becomes

J = min
AAA,BBB,CCC

∑
i, j,k

(
T i, j,k−

R

∑
r=1

AAAirBBB jrCCCkr
)2 (9)

The idea behind the alternating least-squares (ALS) approach
is cast the complex nonconvex optimization problem given
in equation (9) into three simpler and convex least squares
optimization problems as follows,

Step 1: Keeping BBB,CCC fixed, we can solve for AAA as

JA = min
AAA

∑
i, j,k

(
T i, j,k−

R

∑
r=1

AAAirBBB jrCCCkr
)2

= min
AAA
‖T (1)−AAA(CCC�BBB)‖2

F (10)

Solving for AAA, we get,

AAA =
(
T (1)(CCC�BBB)

)
(CCCTCCC ◦BBBT BBB)−1 (11)

Step 2: Similarly, keeping CCC,AAA fixed, we can solve for BBB as

JB = min
BBB

∑
i, j,k

(
T i, j,k−

R

∑
r=1

AAAirBBB jrCCCkr
)2

= min
BBB
‖T (2)−BBB(CCC�AAA)‖2

F (12)

Solving for BBB, we get,

BBB =
(
T (2)(CCC�AAA)

)
(CCCTCCC ◦AAAT AAA)−1 (13)

Step 3: Likewise, keeping AAA,BBB fixed, we can solve for CCC as

JC = min
CCC

∑
i, j,k

(
T i, j,k−

R

∑
r=1

AAAirBBB jrCCCkr
)2

= min
CCC
‖T (3)−CCC(AAA�BBB)‖2

F (14)

Solving for CCC, we get,

CCC =
(
T (3)(AAA�BBB)

)
(AAAT AAA◦BBBT BBB)−1 (15)

Further, after each step, we also normalize the columns of the
determined factor matrix. After normalization of CCC following
equation (15) we store the normalizing factors in a vector λ ∈RR.
From the above equations, the iterative CP-ALS algorithm can be
formulated as follows
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Initialize BBB,CCC;
while not converged do

Solve for AAA using equation (11);
Normalize Columns of AAA;
Solve for BBB using equation (13);
Normalize Columns of BBB;
Solve for CCC using equation (15);
Normalize Columns of CCC, store it in λ ;
Calculate change in error or fitness δ ;
if δ < tolerance then

converged=True
end

end
Algorithm 1: CP-ALS Algorithm

METHODS
Tensor Initialization

For our experiments, we generated synthetic tensors using
the same strategy as described in Battaglino et al. [3]. We cre-
ate tensor (T ) based on factor matrices (AAA,BBB,CCC). This way, we
would know the dependencies in the tensor data. We consider
3rd order problem. The tensor is of size n x n x n. We used the
true rank of matrices AAA,BBB and CCC as n

2 . Therefore, the size of fac-
tor matrices is n x n

2 and all elements are real-values. The factor
matrices are such that all the columns have the same colinearity
c (any two columns of a factor matrix would satisfy the equation
given below).

c =
a(i)Tr a( j)

r

||a(i)Tr || · ||a( j)
r ||

(16)

To generate such a matrix, we followed the approach mentioned
in Tomasi et al. [4]. High collinearity makes the recovery of the
original factors difficult. Therefore, we fixed the colinearity to
0.62 in our experiments. This depends on the congruence fac-
tor given in Tomasi et al. [4]. We choose different congruence
factors for each n (size of the tensor) to ensure that the resulting
colinearity is fixed to be approximately 0.62.

AAA = MR, (17)

where M is congruence matrix of size n
2 ×

n
2 such that the di-

agonals are 1 and all the rest of the values are set to congruence
factor, while R is a random matrix of size n× n

2 with orthonormal

TABLE 1. PARAMETERS

n (size of tensor) Congruence Number of components

50 0.18 80

100 0.14 120

200 0.105 180

column vectors.

T i, j,k =
n

∑
f=1

AAAi, f ·BBB j, f ·CCCk, f (18)

Then, we added noise to the tensor.

T = T true +η

(
||T true||F
||K||F

)
K, (19)

where η = 0.05 is the amount of noise and K is a tensor of equal
size as T and the entries are drawn from a standard normal dis-
tribution.

Implementing the CP-ALS Algorithm
We programmed the CP-ALS according to Algorithm 1 in C

language, starting with a serial code. Details of the critical parts
of the code are given below.

Initialization We initialized factor matrices with uniform
random values between 0 and 1.

MTTKRP The first term of the products in equations (11),
(13), and (15) involve the computation of the Khatri-Rao prod-
uct, which is a highly memory-intensive step. However, certain
structural features of the matrices can be exploited to make the
computation of the term Ā =

(
T (1)(CCC�BBB)

)
- called the Matri-

sized Tensor times Khatri-Rao Product (MTTKRP) a much sim-
pler manner, as given in the equation below. This is inspired by
Rollinger et al. [5].

Āi,r = ∑
j,k
T i, j,k BBB j,r CCCk,r (20)

Likewise, the MTTKRP terms B̄ and C̄ can be computed simi-
larly. This step is one of the most compute-intensive steps of the
code, whose complexity is O(Rd1d2d3) floating-point operations,
comprising of four for loops for each MTTKRP computation.
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Inverse The second term of the products in equations
(11), (13) and (15) involve the computation of the inverse of
the term ÃR×R = CCCTCCC ◦BBBT BBB. Fortunately, Ã would be a sym-
metric positive definite matrix, which would allow us to perform
Cholesky Decomposition (Ã= LLT ) followed by determining the
inverse of L and thereby computing Ã−1.

Normalization After the computation of each factor ma-
trix as per equations (11), (12), and (13), we normalized its
columns. We adopted the idea of MATLAB’s implementation
of CP-ALS (www.tensortoolbox.org) for normalizing, in which
2-norm is used in the first iteration, and ∞-norm is used for sub-
sequent iterations. The normalization factors for CCC were stored
in the array λ .

Error and Fitness The residual sum-of-squares error
objective in equation (4) can be expressed as

e2 = 〈T ,T 〉+ 〈T̂ , T̂ 〉−2〈T , T̂ 〉 (21)

which gives,

e =
√
〈T ,T 〉+ 〈T̂ , T̂ 〉−2〈T , T̂ 〉 (22)

where,

〈T ,T 〉= ‖T ‖2
F (23)

〈T̂ , T̂ 〉= ‖T̂ ‖2
F = λ

T (AAAT AAA◦BBBT BBB◦CCCTCCC)λ (24)

and

〈T , T̂ 〉=
R

∑
r=1

λr

(
∑
i, j,k

T i, j,k AAAi,r BBB j,r CCCk,r

)
(25)

The fit of the estimate f can be determined as follows,

f = 1− e
〈T ,T 〉

(26)

CPU-level Parallelization using OpenMP
We parallelized the code using OpenMP for a shared mem-

ory system. The first part of the code is the synthesis of tensor

data and the second part is tensor decomposition using the CP-
ALS method. To keep the generated matrix the same, we used
the same random seed and avoided parallelization of any step that
used a random number generator. This would ensure the replica-
bility of our code.

GPU-level Parallelization using OpenACC
We parallelized the code using OpenACC, which utilizes

GPU. Similar to the OpenMP code, we parallelized the appropri-
ate loops using the #pragma acc parallel loop ...
command. To the best of our knowledge, we optimized for data
transfer to avoid unnecessary communication between CPU and
GPU.

RESULTS
Serial code

The tolerance required for convergence is set of 1e-8 for
problem size of n = 50 and n = 100, while is is 1e-4 for prob-
lem size n = 200. The number of iterations for convergence for
n = 50 is 2821 with the fit of 0.964, n = 100 is 1090 with the fit
of 0.973 and n = 200 is 54 with the fit of 0.945.

OpenMP
We parallelized the serial code for the shared memory

system using OpenMP. It is seen that the Matricized Tensor
times Khatri-Rao Product (MTTKRP) function is the most time-
consuming step as it is of the order O(n4). After parallelizing the
MTTKRP function, we saw the most significant increase in speed
up. Other important contributors to the time are matrix multipli-
cation, Hadamard product, transpose of a matrix, and tensor re-
construction. Most of these operations were easy to parallelize.
These functions contribute to the maximum speed up. However,
some matrix operations such as Cholesky decomposition, the in-
verse of a tridiagonal matrix, and Gram Schmidt orthogonaliza-
tion did not have the same potential for parallelization due to data
dependency.

Figure 1 shows the variation of speed up with the number of
threads used for the tensor synthesis part. It is seen that speed up
keeps increasing with an increase in the number of threads. How-
ever, as Gram Schmidt orthogonalization (required to generate
the random column-orthonormal matrix) is not parallelized, the
speed up remains low in the absolute sense. With the high num-
ber of threads (32), it is seen that there is a drastic decrease in the
speed up. This may be due to the significant overhead associated
with distributing the data across 32 threads such that it surpasses
the benefits gained by the parallelization. However, such a trend
is also seen with the larger matrix of size 200.

Figure 2 shows the variation of speed up with the num-
ber of threads used for the CP-ALS decomposition part. The
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FIGURE 1. SPEED UP FOR TENSOR SYNTHESIS USING
OPENMP

most time-consuming steps of CP-ALS decomposition are MT-
TKRP, the inverse of a symmetric matrix (which involves trans-
pose, Cholesky decomposition, the inverse of a low triangular
matrix, and matrix multiplication) and reconstructing tensor for
error calculating. Most of these steps are parallelizable using
OpenMP. Therefore, we see a significant increase in the speed
up on increasing the number of cores. This speedup becomes
higher as the problem size increases. This is clearly seen in the
figure. The speedup for a small problem size and a large number
of threads remains low due to the parallel overhead. The associ-
ated reduction of parallelization diminishes as the problem size
becomes smaller as the non-parallelizable part becomes signifi-
cantly time-consuming and the overhead associated with paral-
lelization increases.

OpenACC
Our code did not perform as expected due to some issues in

data transfer mechanisms and produced a zero result every time.
We wish to investigate the correctness of our code and rectify the
errors.

DRAWBACKS AND CHALLENGES
Although the alternating least squares approach for perform-

ing CP decomposition of a tensor is simple and easy to imple-
ment, there are a few notable drawbacks of this algorithm. First,
the factorization is very sensitive to the starting values of the
factor matrices. Second, the convergence of the CP-ALS algo-
rithm is extremely slow and computationally expensive for large
matrices, and there is no guarantee of reaching the global opti-

FIGURE 2. SPEED UP FOR CP-ALS TENSOR DECOMPOSITION
USING OPENMP

mum. Hence, for huge sparse matrices, the CP-ALS algorithm
is, in most cases, not the appropriate algorithm. We would also
acknowledge certain drawbacks of our parallel algorithm. Par-
allelization was performed only at a higher level on most of
the for loops. In other words, in areas where there are nested
loops consisting of multiple for loops that can be parallelized,
we chose to parallelize only the outermost loop in all cases.
This way, full-fledged parallelism was not leveraged, and our
speedups might not be optimal. Also, it is evident from the nature
of the algorithm that distributed computation is highly favorable
- for example, dividing the tensor or matrices into blocks and
performing computation separately on different processors. This
level of parallelization appears more efficient than using shared
memory and is possible using MPI. We faced many challenges
in data communication when we were implementing MPI, and
we did not proceed with that further. Lastly, we did not try out
input sizes beyond n = 200. Running the codes with large input
sizes such as n = 500,1000 would have better highlighted the
scalability of our parallel approach.

DISCUSSION AND FUTURE WORK
Tensor decomposition algorithms are rapidly evolving, and

the newer algorithms are better in terms of speed, accuracy,
scalability, robustness, and parallelizability. Our humble attempt
to parallelize the simplest CP decomposition algorithm that uses
an alternating least-squares approach has been successful with
OpenMP. The choice of the rank R, i.e., the number of rank-1
components to restore the tensor, and the convergence criteria
influence the speed and accuracy of the reconstruction. Higher
values of R and stricter convergence criteria can improve the
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accuracy to a reasonable extent, but the speeds will be slower.
However, we also need to take into account that if we keep
increasing R in the hope of improving the fit, there are chances
that the model will overfit the noisy data, which is generally
undesirable.

Tensor decomposition algorithms are, in general, highly
parallelizable in many parts of the code, and detailed analysis
must be performed to identify areas that can be parallelized in an
optimized manner. As reported in other studies which attempted
to parallelize the CP-ALS algorithm, using a combination of
OpenMP and MPI with minimal data transfers is an extremely
powerful approach, in addition to GPU-level parallelization. In
the future, we would like to improve our parallel code and fully
parallelize all possible sections and prepare codes for decompo-
sition of tensors with order greater than 3. We will also work
on correcting the data copying mechanism in our OpenACC
code. Further, parallelizing other sophisticated variants of the
CP algorithm, like CPRAND [6] and CP-ARLS-LEV [7] would
be another interesting future direction. Lastly, we are very
much looking forward to implementing our parallel algorithm
on large real-world datasets to analyze the performances and to
extract meaningful domain-specific information from the factor
matrices. Prominent multidimensional datasets include GTEx
(Genotype-Tissue Expression Dataset) [8] multi-tissue gene
expression dataset and social media datasets (e.g. Reddit and
Twitter).

CONCLUSION
The recent decade witnessed an explosion in the magnitude

of data getting generated. Higher-order tensors are becoming
increasingly popular for data storage and processing. In this re-
gard, specialized algorithms that are suitable for tensors are re-
quired. Low-rank Tensor decomposition helps in breaking down
tensors into meaningful components and denoising the data. In
this project, we have attempted to parallelize the CP-ALS (al-
ternating least-squares) tensor decomposition algorithm using
OpenMP and OpenACC. While we were successful in CPU-level
parallelization using OpenMP, we faced issues while implement-
ing OpenACC due to possibly incorrect data copying mecha-
nisms, which we look forward to correcting it. Overall, we have
highlighted the performance and parallelizability of the CP-ALS
algorithm.

CODE AVAILABILITY
The codes are also available on the given github repository.

htt ps : //github.com/BurhanSabuwala/PSC pro ject.
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