
Natural Language Processing Project

Aditya Singh Mahala (CE17B023)1 and Burhanuddin Sabuwala (BE17B011)1

Indian Institute of Technology Madras, Chennai 600036, India

Abstract. Information Retrieval is an essential task with applications
in various search engines. We utilized topic modeling, concept mod-
eling, word relation model-based approaches for the task of informa-
tion retrieval. Additionally, we also tried a deep learning-based encoder-
decoder-based system. We tested our methods on the Cranfield dataset.
We found that simpler methods perform better than complex methods.
Latent Semantic Analysis turns out to be our best-performing model.
The classical methods used for Information Retrieval(IR) have been quite
effective in the long run. In this project, we have used different tech-
niques, combined with classical IR techniques and some based on deep
learning. The main aim of this study is to compare some of the different
techniques and then present the best model for IR.

Keywords: LSA, LDA, GloVe, Information Retrival, Encoder-decoder,
NLP, Word2Vec, Cranfield

1 Introduction

Information retrieval (IR) is a class of problems where the goal is to obtain
relevant documents from a database with the input as a query. It is the science of
finding the most relevant set of k documents. One classic example of Information
Retrieval is Google Search. Multiple web pages are indexed by the web crawlers.
Based upon a given query (Google search), the search engine tries to retrieve
the most relevant set of webpages (or documents) and ranks them. Although
web search engines are the most popular IR applications, it has a wide variety
of applications. Some of the applications are search engines to find the most
relevant book or set of books in a library, search engines to search relevant
people on social media, Recommender systems, accessing genomic information,
accessing appropriate court proceedings, etc.

There are several methods to approach the information retrieval problem.
One of the most common methods for IR in structured databases is SQL-based
queries. However, the queries used in IR are usually given in a natural language,
and therefore, SQL is not compatible with the task. Moreover, the information
Retrieval task is challenging because of the complexity of the language and
different styles of using the language, which is reflected in the documents as well
as queries. Additionally, SQL does not rank the documents. Therefore, there is
a need to address IR using other innovative methods. Most of the existing IR-
based systems compute a numeric score for every document in the database with



2 Aditya Singh Mahala (CE17B023) and Burhanuddin Sabuwala (BE17B011)

the given query. This makes the ranking process more straightforward, and the
user can then choose to retrieve the corresponding document/documents based
on the shown results.

2 Problem Definition

Dataset: We are given the Cranfield dataset. It is one of the standard classical
datasets for the purpose of information retrieval. Cranfield dataset contains 1400
documents and 225 queries. Associated with each query is a list of relevant
documents with their corresponding relevance score. The relevance score denotes
whether a document answers the query, whether it is just an example or if it
only refers to a few things relevant to the document.

Task: Our task is to build a complete end-to-end IR system. This IR system
has been documented in its database. It takes queries as input and reports k
relevant documents as output.

3 Background and Related Work

Several methods have been proposed for information retrieval. The first and
foremost step for information retrieval is cleaning. Effective pre-processing tech-
nique can greatly improve the performance of an IR system [1] [2]. We used
the same preprocessing techniques that we had used in assignment 1a. Further,
this preprocessed data is converted into some numerical form. It could either be
vectors or probabilities. The same treatment is applied to queries. A similarity
score could be obtained to rank the documents based on the queries. Various
methods have been used to address the IR task.

Several methods have been tried for Information Retrieval. Semantic Analysis-
based methods are quite widely used. Some of the popular approaches are Latent
Semantic Analysis, Explicit Semantic Analysis, and Latent Semantic Indexing
[7], [8]. Aguilar et al. compared term frequency-inverse document frequency (TF-
IDF) with Latent Semantic Analysis, Latent Dirichlet Allocation, BM25, and
Doc2Vec on the Cranfield dataset. LSA was the best performing method among
all of them, followed by BM25, LDA, and Doc2Vec [8].

4 Motivation

The current TF-IDF model assumes orthogonality between all the words. This
assumption is not valid. Moreover, the vectors are very sparse and very large.
The size of the document TF-IDF matrix is about 6227 x 1400. This occupies
huge RAM, which is unnecessary. The large size of the vector also amounts to the
considerable time taken to compute the cosine similarity. Therefore, a topic or
concept-based model is required. This would make the vectors dense and small,
thus optimizing the memory and time requirements. Additionally, it would also



Natural Language Processing Project 3

address the issue of orthogonal words. For this purpose, we used Latent Semantic
Analysis and Latent Dirichlet Allocation. Additionally, we also used Word2Vec
embeddings and GloVe embeddings, taking into account the meaning of the
words.

Recurrent Neural network-based models have seen increasing use and popular-
ity in the field of Natural Language Processing. This happened because of their
ability to process sequence data. One of the most popular ideas in the field of
NLP has been encoder-decoder ([4]) based models for Neural Machine Transla-
tion. It uses two separate RNN models. The first one is an encoder that encodes
the input sequences to a vector of fixed length and the second one is a decoder
that uses this vector to construct the output sequence. The most important part
of this model is compressing the input sequence into a vector which can be eas-
ily decoded by the decoder to give meaningful output sequences. We used this
idea to develop a model which can compress the documents and queries in the
Cranfield dataset to a set of vectors that can be later compared to determine
the required metrics.

One major issue with RNN’s is that their performance with long sequences
is not good. In order to tackle that, we have used bi-directional LSTM’s ([3]).
Another major issue that arises with long sequences is that the context of the
text in different parts of sentences is lost in the case of long sentences. For
example, take the following sentence “Breakfast was healthy. I had it with my
family.” where “it” refers to “Breakfast.” But such contextual meanings of some
words are not effectively modeled by sequential models. In order to model such
long-term dependencies between words, we used the attention mechanism ([5]).

5 Proposed Methodology

5.1 Baseline Model

The baseline model consists of several steps. The steps are given below.

1. Sentence Segmentation: We used Punkt tokenizer present in NLTK package
2. Word Tokenization: We used Penn Treebank Tokenizer
3. Stopword removal: We removed all the stopwords mentioned in nltk package
4. Lemmatization: We lemmatized the words to their root form using the spacy

package.
5. Information Retrieval: We converted the documents to their TF-IDF vector

forms. The queries were also converted to their similar TF-IDF vector form.
Then cosine similarity between the document vector and query vector is used
to rank the documents.

6. Evaluation: The evaluation is done on multiple metrics. Precision, Sensi-
tivity, Mean Average Precision, normalized Discounted Cumulative Gains,
F1-score, time taken for document retrieval are the metrics that we are us-
ing to evaluate our methods. Out of all these metrics, only nDCG accounts
utilizes the relevance scores of the documents corresponding to each query.



4 Aditya Singh Mahala (CE17B023) and Burhanuddin Sabuwala (BE17B011)

Most of the methods that we are using in this study follow the same pre-
processing steps as the baseline model. The preprocessing steps include Sentence
Segmentation, Word Tokenization, Stopword Removal, and Lemmatizaition. These
methods are also evaluated on the same metrics as mentioned above.

5.2 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is used for analyzing relationships between
a set of documents and the terms that are present in them. This is done by
producing a set of concepts related to the documents and terms. LSA works on
the assumption that the words that are close in meaning will occur in similar
pieces of text.

Fig. 1. Explained Variance Ratio for Singular Value Decomposition. This is obtained
by Latent Semantic Analysis of documents of Cranfield dataset.

For LSA, we generated the TF-IDF vectors corresponding documents and
build a TF-IDF x document matrix. Then, we performed Singular value de-
composition to obtain the concepts. The resulting vectors of the documents are
linear combinations of individual concepts. This overcomes the assumption that
is made in the TF-IDF vector space model that the terms are orthogonal to each
other. Further, the query vectors also undergo a similar transformation, and co-
sine similarity is used to obtain the rankings of the documents. In our study, we
retained 500 concepts (or singular values). This amounted to almost 80% of the
total explained variance. This is shown in figure 1.

5.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation is another method that takes into account the simi-
larity between words based on documents. LDA is used for topic modeling and
topic discovery in Natural Language processing. It is a statistical model that
assumes that the documents are made up of a small number of hidden topics.



Natural Language Processing Project 5

Most documents will only contain a relatively small number of topics. They
follow a probability distribution such that a given document is more likely to
contain some topics than others. LDA is a generalized approach of probabilistic
Latent Semantic Analysis. LDA assumes that there are θi topic distributions for
document i and ψk word distribution for topic k [9], [10].

For our work, we used the LDA model from the gensim package [11]. The
LDA model assumed that each of the documents is made up of 8 topics. The
LDA model converts the documents (Bag of word encoded documents) to proba-
bilities of each topic. Further, we used Jensen Shannon Distance (JSD) between
the query and the documents to get the corresponding rankings. We used JSD
instead of cosine similarity because we are dealing with the probabilities of each
topic. Unlike cosine similarity, lower JSD means higher similarity in this case.

5.4 GloVe Embeddings

We also tried GloVe word embeddings [6]. The document is taken as an average
of all the words occurring in the document. For similarity ranking, we used cosine
similarity.

5.5 Word2Vec Embeddings

Fig. 2. TSNE visualization of Word2Vec embedding of Cranfield Documents

Word2Vec is a shallow neural network model to learn word associations.
Word2Vec is tailored in such a way that cosine similarity between the words
would represent their semantic similarity. It assumes that distributionally similar
words would also be semantically identical.



6 Aditya Singh Mahala (CE17B023) and Burhanuddin Sabuwala (BE17B011)

Word2Vec was also done using the gensim model [11]. The model was trained
on the Cranfield documents. Each of the words in a given document is converted
to Word2Vec embeddings. Then the document vector is represented using the
average of all of these word vectors. The embeddings are visualized in fig 2. The
ranking is obtained by computing cosine similarity between the document vector
and the corresponding query vectors.

5.6 Encoder-Decoder base method

Layer (type) Output Shape Param

Embedding Embedding d

Embedding (None, 50, 200) 1098200

Encoder Bidirectional LSTM1 (None, 50, 128) 135680

Encoder Bidirectional LSTM1 (None, 50, 128) 98816

Encoder Bidirectional LSTM1 (None, 50, 128) 98816

Encoder Bidirectional LSTM1 (None, 50, 128) 98816

attention (None, 128) 178

RepeatVector (None, 50, 128) 0

Decoder LSTM1 (None, 50, 64) 49408

Decoder LSTM2 (None, 50, 128) 33024

Decoder LSTM3 (None, 50, 128) 33024

Decoder LSTM4 (None, 50, 128) 33024

Decoder LSTM5 (None, 50, 128) 33024

TimeDistributed (None, 50, 200) 13000

Dense (None, 50, 200) 0

Table 1. Encoder-Decoder Architecture

1. The first step is data preprocessing, which only includes lemmatization and
stop word removal. Once we got the data as tokenized words, we converted
them back to sentences by concatenating them. This was done because our
model takes input in sequential format and not in the form of word tokens.

2. Then, we used a tokenizer to fix the vocabulary size and create a word index.
This also helped us in converting the data from textual data to numeric data,
which was later on used for creating a word embedding matrix.

3. After getting the word index for all the words, we created sequences of length
50 to be passed on to our model. These sequences have a word index in place
of each individual word. In order to fill sequences of length less than 50, the
post padding technique has been used. Vocabulary size is kept to 1000 words.

4. Next step involves creating a word embedding matrix which will be fed
to the neural network for creating document tensors. For this model, we
have used glove word embeddings([6]). This matrix consists of a row vector
representation of each word at its respective index. The dimensions of this
matrix are (1000,200) where each row represents a word.



Natural Language Processing Project 7

5. Next step involves creating an encoder-decoder model. For this model, we
have four encoder layers and four decoder layers. There is an attention layer
after the encoder layers. The model uses a self-training mechanism (unsuper-
vised learning) that takes in the sequence and tries to restructure the same
sequence. This idea effectively helps us to get a vector representation of the
documents. There are 64 hidden nodes for each layer. Input dimensions are
(batch size, 30, 200) where batch size is 64.

6. For training, we have divided the data into 90 % training set and 10% val-
idation set. We have used Adam optimizer for training with a learning rate
of 0.001. After that, we train the model, and once the model is created, we
create another model based on this model. This new model takes input in
the form of the sequence of the original text and outputs the context vector
from the encoder. We repeat this process for both documents and queries to
get a list of all the vectors. Once the vector representations are obtained, we
used a similar evaluation method for other models.

6 Results

6.1 Information Retrival Performance

Fig. 3. Latent Semantic Analysis Evaluation score compared with Baseline model

It is seen that Latent Semantic Analysis shows significant improvement com-
pared to the baseline model from figure 3. There is improvement in all the
performance metrics that we are considering as compared to the baseline model.



8 Aditya Singh Mahala (CE17B023) and Burhanuddin Sabuwala (BE17B011)

Fig. 4. Latent Dirichlet Allocation Evaluation score compared with Baseline model

Fig. 5. Glove Embedding Evaluation score compared with Baseline model

From the figure 4, it is seen that Latent Dirichlet Allocation is not perform-
ing well. It cannot beat the baseline TF-IDF-based model. All the performance
metrics are pretty low, but this model is performing slightly better than random.

GloVe embedding model is performing worse than baseline model in all the
performance metrics as seen in figure 5. The GloVe embedding model is able to
perform better than random. However, it is not able to beat the baseline model.
This suggests that maybe if the GloVe model is trained on a larger dataset than



Natural Language Processing Project 9

Fig. 6. Word2Vec embeddings Evaluation score compared with Baseline model

Fig. 7. Ouptut metrics for Encoder-Decoder Model

Cranfield but having similar properties as Cranfield documents and queries, it
can potentially beat the baseline model.

Word2Vec model is not performing as expected. It is not able to pick up the
relationships between the words correctly. This is clear from the figure 2. The
figure 6 shows that the Word2Vec model is not performing as expected. The
performance of the Word2Vec model is almost as good as random not. Therefore,
it is not entirely helpful in our task. This could potentially be attributed to the



10 Aditya Singh Mahala (CE17B023) and Burhanuddin Sabuwala (BE17B011)

smaller size of the Cranfield dataset compared to the typical corpora used to
train the standard Word2Vec models.

As shown in fig. 7, we found out that the encoder-decoder-based model
doesn’t perform as per expectations on the given dataset.

Therefore overall, LSA performs the best and is the only model that performs
better than the baseline model. The second-best model is the baseline model.
However, it has a much longer execution time. Then followed by the GloVe
model, which also performs well (better than random). This is followed by LDA,
Encoder-Decoder-based approach, and Word2Vec embeddings.

6.2 Computational Time

Method Total time (seconds) Information Retrival time (seconds)

Baseline model 3545 941

LSA 1336 52.3

LDA 1363 191.3

GloVe 1020 82.3

Word2Vec 1127 62.3

Encoder-decoder 2000.342 447.34
Table 2. Time comparision of different methods

The table 2 shows the amount of time taken to run the complete code and
the information retrieval part. It is seen that all the models perform better than
the baseline model. This could be attributed to the fact that the vector sizes cor-
responding to each document are much smaller in any of the models compared
to the baseline model. This significantly reduces the time taken to compute sim-
ilarity scores. It also helps with the storage of the document vectors as these
compressed representations would require less memory. The GloVe model is al-
ready trained, and it only fetches the word embeddings from the trained model.
Therefore, comparing GloVe timings with others might not be a fair comparison.

7 Conclusion

The performance scores that we are getting are consistent with Aguilar et al.
[8]. They also had LSA as the best performing model, followed by BM25, LDA,
and Doc2Vec on the Cranfield dataset.

The better performance of simpler models such as LSA and the baseline
model can be attributed to the fact that their corresponding parameters are
estimated much better than the other complex models with multiple parameters
since their models are simpler. These other complex models probably require
much larger amounts of data for better parameter estimation. In other words, the



Natural Language Processing Project 11

complex models like the deep encoder-decoder, LDA, Word2Vec were possibly
under-fitted.

On the other hand, LSA and baseline models had an advantage over them
as the number of documents in the Cranfield dataset is low. However, GloVe is
an exceptional case. We were using pre-trained embeddings of the GloVe model.
This might be responsible for giving it the leverage to perform much better
than random. However, it was not specific to the peculiar aerospace literature
of Cranfield and was not able to beat the baseline model. As for the time com-
plexity, we are reducing the number of components of vector used to represent
documents from 6772 (in the baseline TF-IDF model) to a few hundred or a few
tens, significantly reduces the information retrieval time.

8 Acknowledgements

We are grateful to Prof Sutanu Chakraborti for providing us with an opportunity
to work on this project and equip us with the tools necessary to build an end-to-
end Information Retrieval System. We are also grateful to the TAs of the NLP
course for helping us with our difficulties. We really had a great time during the
course and we learnt a lot. We would also like to acknowledge our classmates for
initiating very interesting discussions in the class that helped us in our project.

References

1. Harnani Mat Zin, Norwati Mustapha, Masrah Azrifah Azmi Murad, and Nur-
fadhlina Mohd Sharef, “The effects of preprocessing strategies in sentiment anal-
ysis of online movie reviews”, AIP Conference Proceedings 1891, 020089 (2017)
https://doi.org/10.1063/1.5005422

2. Haddi, Emma, et al. ‘The Role of Text Preprocessing in Sentiment Analy-
sis.’ Procedia Computer Science, vol. 17, 2013, pp. 26–32. DOI.org (Crossref),
doi:10.1016/j.procs.2013.05.005.

3. Hochreiter, Sepp, and Jürgen Schmidhuber. “Long Short-Term Memory.” Neu-
ral Computation, vol. 9, no. 8, Nov. 1997, pp. 1735–80. DOI.org (Crossref),
doi:10.1162/neco.1997.9.8.1735.

4. Cho, Kyunghyun, et al. “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation.” Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), Asso-
ciation for Computational Linguistics, 2014, pp. 1724–34. DOI.org (Crossref),
doi:10.3115/v1/D14-1179.

5. Bahdanau, Dzmitry, et al. ‘Neural Machine Translation by Jointly Learning
to Align and Translate.’ ArXiv:1409.0473 [Cs, Stat], May 2016. arXiv.org,
http://arxiv.org/abs/1409.0473.

6. Pennington, Jeffrey, et al. “Glove: Global Vectors for Word Representation.” Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), Association for Computational Linguistics, 2014, pp. 1532–43.
DOI.org (Crossref), doi:10.3115/v1/D14-1162.



12 Aditya Singh Mahala (CE17B023) and Burhanuddin Sabuwala (BE17B011)

7. Egozi, Ofer, et al. ‘Concept-Based Information Retrieval Using Explicit Semantic
Analysis.’ ACM Transactions on Information Systems, vol. 29, no. 2, Apr. 2011,
pp. 1–34. DOI.org (Crossref), doi:10.1145/1961209.1961211.

8. Aguilar, J. et al. ‘Comparison and Evaluation of Different Methods for the Fea-
ture Extraction from Educational Contents.’ Computation, Jan. 2020. reposi-
tory.eafit.edu.co, http://repository.eafit.edu.co/handle/10784/28641.

9. Blei, D., Ng, A., Jordan, M. Latent Dirichlet allocation. J. Mach. Learn. Res. 3
(January 2003), 9931022.

10. Blei, David M.’ Probabilistic Topic Models. Communications of the ACM, vol. 55,
no. 4, Apr. 2012, pp. 77–84. April 2012, doi:10.1145/2133806.2133826.

11. Gensim–python framework for vector space modeling. NLP Centre, Faculty of In-
formatics, Masaryk University, Brno, Czech Republic, 3(2). 2011

12. Mikolov, Tomas, et al. ‘Efficient Estimation of Word Representa-
tions in Vector Space.’ ArXiv:1301.3781 [Cs], Sept. 2013. arXiv.org,
http://arxiv.org/abs/1301.3781.


